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• Traditional machine learning: Isolated single-task learning

• different tasks learned separately and independently
○ no knowledge accumulation or sharing
○ model fixed after deployment

• We, humans, never learn in isolation. We learn continually and accumulate 
knowledge over time.

• Challenge: catastrophic forgetting. When learning a new task, the DNN 
changes its parameters, which may cause deterioration in performance of 
previous tasks.

Training

Fixed dataset Model



Motivation behind Continual Learning
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• Need for a balance between adapting to new data and retaining knowledge 
acquired from old data:

○ high plasticity leads to catastrophic forgetting
○ low plasticity leads to limited adaptation

• Adaptation (across tasks) is measured using:
○ Forward transfer: learning from old tasks helps future task learning
○ Backward transfer: learning from future tasks helps improve previous task 

learning.

• Classes of CL in this paper:
○ task-incremental learning (Task-IL): the identity of the task to be always 

provided which makes task-specific training possible.
○ domain-incremental learning (Domain-IL): the task identity is not known 

at inference time.
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Continual learning methods

Three CL techniques

• Regularization methods:
○ regularization term in the loss function
○ no buffer memory is used during training

• Rehearsal methods:
○ use memory buffers to store samples from previous tasks
○ revisit stored samples during learning (as input to the DNN)
○ constrain the loss function to prevent task interference

• Architecture-based methods:
○ append new model parameters to each task
○ each task uses different model parameters while freezing or masking out the 

parameters of previous tasks

The focus of
this paper
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Synaptic Intelligence (SI)

• Type: regularization method

• Key idea: Prevent important parameters for previous tasks to change drastically when learning a new one. If 
a parameter is important for the task 1, then it will try to stay as close as possible to its value when learning a 
new task 2

     ⇒ the parameter will converge to a reference value that achieves good performance on all tasks and not on 
         tasks individually

• Details:
○ The importance of a parameter       (i.e., weight and bias) is determined by two quantities:

■ a measure proportional to its contribution to the task objective minimization over the entire training 
trajectory

■ the distance traveled in the parameter space
○ New surrogate loss for the task

the parameters at the end of    
        the previous task

Per-parameter regularization strength

damping parameter to 
avoid division by 0 7 /26



Gradient Episodic Memory (GEM)

• Type: replay-based, constraint optimization

• Key idea: constrain the new task updates to not interfere with previous tasks using samples stored in 
episodic memory

• Details:
○ The losses on previous tasks estimated using the samples in the memory are treated as inequality 

constraints when learning a new task

episodic memorytraining dataset for the current task t NN trained till task t-1

→ The inequality constraint avoids loss increase for previous tasks while allowing its decrease (better 
backward transfer)

○ Projects the proposed gradient direction for the current task g when the angle between the g and the 
gradient vectors of previous tasks is greater than 90 by solving the following QP:

8 /26proposed gradient direction for the task t projected gradient direction 



Averaged-GEM (A-GEM, A-GEM-R)

• Type: replay-based, constraint optimization

• Key idea: improves on GEM by averaging over the episodic memory

• Details of A-GEM:
○ add one constraint on the average loss over the previous tasks instead of each previous task 

individually  (i.e., 1 constraint instead of t-1 constraints in GEM)

○ If the proposed gradient for the current task g violates the constraint, it is projected as follows:

              where        is the gradient computed using a batch randomly sampled from the memory  

episodic memorytraining dataset for the current task t NN trained till task t-1
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Averaged-GEM (A-GEM, A-GEM-R)

• Type: replay-based, constraint optimization

• Key idea: improves on A-GEM by using reservoir sampling technique and eliminating task boundaries

• Details of A-GEM-R:
○ A-GEM-R is A-GEM with a reservoir buffer
○ A-GEM relies on task boundaries to store the samples in the memory buffer
○ A-GEM-R extends A-GEM to have a memory buffer from which it obtain batch samples without task 

boundaries
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Experience Replay (ER)

• Type: replay-based

• Key idea: Retrain the model on samples from the current tasks and a subset of samples from previous tasks

• Cons:
○ Prone to overfitting to the subset of stored examples 
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Dark Experience Replay (DER, DER++)
• Type: replay-based

• Key idea: use distillation and regularization to minimize the difference between the current and previous 
model outputs (i.e., logits)

• Details:
○ Rely on dark knowledge [1] for distilling past experiences, sampled over the entire training trajectory
○ Store the model logits (pre-softmax) instead of labels
○ Reservoir sampling is used to populate the buffer
○ The loss for the current task

Previous network logits for x current network logits for x
        (before softmax)

Memory

DER

DER++

additional penalty term using the ground truth
12 /26

 [1] - Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Dark Knowledge. https://www.ttic.edu/dl/dark14.pdf

current NN output
   (after softmax)



 Function Distance Regularization (FDR) 

• Type: replay-based

• Key idea: Align previous and current outputs in function space using an L2-regularization loss

• Details:
○ Saves network outputs at task boundaries

current function    
      (i.e, NN) 

function after training 
 the task A (i.e, NN) 

• Cons:
○ Stores data at task boundaries
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Continual learning for channel estimation

Channel model

• Gauss-Markov Rayleigh fading MIMO channel between N transmit antennas and 
M receive antennas.

• The transmission for B time blocks each of which is used to transmit K symbols.

• The block-fading channel is assumed to remain constant over the entire b-th time 
block, while the total duration of KB symbol periods is used for channel 
estimation within the overestimated channel coherence time Tc.
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Continual learning for channel estimation

Channel model

• For every time-block b, the received signal is given by:

           with
                                     is the transmitted symbol vector
                                     is the additive complete white Gaussian noise,
                                     i.e.,

• At a given SNR    , the noise variance can be controlled as
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Continual learning for channel estimation

Channel model

• The time-varying Rayleigh fading channel evolves from one block to another 
according to the Gauss-Markov model:

                                                                                for 

           with
                                     is the channel memory factor.

• The channel can be written in a explicit non-recursive form as:

initial value exponentially decaying perturbation
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Continual learning for channel estimation

Distribution shift in the power of the received signal

varying the coherence time Tc
         at SNR     = 10 dB

     varying the SNR level
    at Tc = 20 symbol periods
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Continual learning for channel estimation

Tasks protocols

• We consider two domain-IL tasks:

○                                              : channel samples for each SNR level

○                                         : channel samples for each coherence time Tc

• Note that we consider these tasks as domain-IL since an implicit task-dependent 
transformation will be applied on the inputs of the channel estimation model (i.e., 
received signal). However, it is important to highlight that this setting is slightly 
different from the common assumption in the CL literature where domain-IL tasks 
are defined using direct transformation on the inputs (e.g., rotation, permutation)
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Continual learning for channel estimation

Tasks ordering

• We examine how changing the task order affects the channel estimation.

• Two different task orderings of the sets            and          :

○ Curriculum order (easy to hard): from easy to hard to imitates the learning 
order in human curricula, i.e., from high to low SNR.

○ Random order: the tasks are randomly presented to the DNN.

•  Task ordering hypothesis: curriculum order leads to a more accurate DNN as 
compared to the random order of tasks.
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Continual learning for channel estimation

Evaluation metrics

• The DNN performance is evaluated on all previously learned tasks after it has 
finished learning a task

• After learning all the T tasks, we obtain the MSE matrix                      where
   the element        which represents the MSE of the  task      after learning the task

•        stands for the error on the task     after learning all the T tasks

• Let     denote the error vector of a randomly-initialized model
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• We assess the ability to transfer knowledge across tasks by measuring:

○

○

○

Continual learning for channel estimation

Evaluation metrics

the MSE of the  task      after learning the task

the error on the task     after learning all the T tasks

the error vector of a randomly-initialized model
22 /26



Continual learning for channel estimation

Estimation Accuracy

• The MSE for each one of each CL method when the SNR is varied 

, curriculum ordering , random ordering
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Continual learning for channel estimation

Estimation Accuracy

• The MSE for each one of each CL method when the coherence time is varied

, curriculum ordering , random ordering
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Continual learning for channel estimation

Task transferability

• Forward and backward transfers for each one of each CL method
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Conclusion

• Distribution shifts is observed in the received power as a function of the SNR 
level and the coherence time.

• We benchmarked the state-of-the-art continual learning methods to account for 
the distribution shift in the Gauss-Markov channel estimation problem.

• We examined the learning of these two tasks in both curriculum and random 
orders. We confirmed the task ordering hypothesis, i.e., curriculum order is better 
than the random one.

• Simulation results suggest that CL methods with with experience replay 
outperform the other CL approaches.
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