Retrieval Augmented LLMs

A.k.a Retrieval Augmented Generation (RAG)

Motivation: Limitations of pretrained LLMs

- Knowledge cutoff:
 - Lack up-to-date knowledge
 - Lack of knowledge outside the training dataset
 - Lack of specific knowledge (e.g., private or confidential data)
- Hallucination
 - Inaccurate, invalid information

I'm sorry, but as an AI developed by OpenAI with a knowledge cutoff in September 2021, I do not have access to real-time information or updates after that point. Therefore, I'm unable to tell you who the NBA MVP was in 2023. Please refer to a reliable sports news source to get this information.

Source : Knowledge Graphs & LLMs: Fine-Tuning Vs. Retrieval-Augmented Generation

Motivation: Available solutions

Knowledge cutoff, Hallucination -> Supervised Finetuning:

- Time consuming
- Data generation (prompt-completion pairs) is time consuming and expensive
- Dynamic data sources (i.e., changes quickly)

Hallucination -> RLHF

- Resource intensive
- Human and manual input and supervision
- Works only during training and not inference

Supervised finetune
(from <u>Understanding Parameter-Efficient Finetuning of Large</u>
Language Models: From Prefix Tuning to LLaMA-Adapters)

Context window

 Incorporate knowledge into LLMs using context window:

- (+) No need to finetune
- (-) the context window is limited
- (-) cost increases as the size of the context increases
- -> How to make the most of the limited context window

Feeding up-to-date information to the LLM source: The full stack LLM bootcamp

Augmented LLMs

source: The full stack LLM bootcamp

Retrieval augmentation

- Why?
 - The process of building the context for LLMs == Information retrieval
 - Search for right data to put in the context window
- Retrieval Pipeline: Given a user query, search for all the relevent objects (e.g., documents) and rank them

Retrievers

- **Sparse**: sparse bag-of-words representations of the documents and the queries
- -> checking for precise term syntax overlap
- -> Doesn't capture semantic information, correlation information
- Dense: dense query and document vectors obtained from neural networks (a.k.a embeddings)
- -> computing the <u>semantic</u> similarity of related topics

source: Pinecone-dense-vectors

source: on word embeddings

Which embedding model?

Popular but not free:

OpenAl text-embedding-ada-002

Open source: see MTEB leaderboard on HF

 For better retrieval quality, training your own embedding model is necessary

Massive Text Embedding Benchmark (MTEB) Leaderboard.

How to chunk data?

- Like LLMs, embedding models have limited context
 - -> Split the documents to multiple chunks
- Things to consider:
 - Natural structure, semantic content
- Tools: Langchain, NLTK, LLamaIndex
- Ideas:
 - Perplexity decreases at a semantic boundary
 - Use distance between embedding (higher -> chunk)
 - Summarize -> embed

Embedding Retrieval: KNN & Flat index

- Embed your corpus
- · Store embeddings as an array
- Embed the query, compute dot product with the array

```
# vec -> 1D numpy array of shape D
# mat -> 2D numpy array of shape N x D
# k -> number of most similar entities to find.
similarities = vec @ mat.T
partitioned_indices = np.argpartition(-similarities, kth=k)[:k]
top_k_indices = partitioned_indices[np.argsort(-similarities[partitioned_indices])]
```

- Works for < 100K vectors (difference in speed not noticeable)
- Not scalable (of course)

Approximate nearest neighbor (ANN) index

- Embedding Indexes : data structure enabling efficient and fast retrieval
- Approximate nearest neighbor (ANN) index
- The indexing process :
 - partitioning the vector space
 - creating data structures to enable efficient traversal and search operations
 - storing the necessary metadata for each indexed vector.

Vector databases

- ANN indexes are just data structure, they do not offer:
 - Hosting
 - Storing data/metadata alonside vectors
 - Combining sparse + dense retrieval
 - Managing embedding functions themselves
 - Scale
 - •

Vector database

Tool	Prominent users	DB features	Embedding mgmt	Sql-like Filtering	Full text search	It's for
Chroma 🏉	N/A	✓	~	~	X	Betting on the most "AI- native" tool in the category
Milvus	ebay Walmart 🌟	~	X	~	X	Scale & enterprise
Pinecone	shopify GONG	✓	X	~	X	Fastest to get started
vespa	yahoo! Spotify .R&D	~	~	~	~	Battle-tested; most powerful
weaviate	N/A	~	~	~	~	Embedding mgmt and flexible GraphQL-like query interface

source: The full stack LLM bootcamp

Retrieval Augmented LLMs- Full pipeline

Retrieval Relevance: NN way

- Re-ranking: further re-fined the retrieved documents
 - **Cross-encoder**: takes a query and a document vector as the input and calculates the relevance scores as the maximum inner product over it.
 - **Bi-encoder**: takes a query and a document vector as the input and calculates the relevance scores as the maximum inner product over it.
 - **Cascaded pipeline**: cheap algorithm for retrieval (e.g, ElasticSearch, BM25, bi-encoder), more complex model for re-ranking (cross-encoder)
 - Using LLMs: to generate synthetic data in few-shot manner and then finetune a re-ranker model
 - Read more <u>here</u>

Figure adapted from ColBERT paper

Retrieval Relevance: Non-NN ways

- **Maximal marginal relevance** (MMR): selects diverse and representative documents from a larger set of search results.
- Filtering: based on metadata or keywords

Thank you