
Retrieval Augmented LLMs
A.k.a Retrieval Augmented Generation (RAG)



Motivation: Limitations  of pretrained LLMs

• Knowledge cutoff: 
• Lack up-to-date knowledge 

• Lack of knowledge outside the training 
dataset

• Lack of specific knowledge (e.g., private or 
confidential data)

• Hallucination
• Inaccurate, invalid information 

Source : Knowledge Graphs & LLMs: Fine-Tuning Vs. Retrieval-Augmented 
Generation

https://medium.com/neo4j/knowledge-graphs-llms-fine-tuning-vs-retrieval-augmented-generation-30e875d63a35
https://medium.com/neo4j/knowledge-graphs-llms-fine-tuning-vs-retrieval-augmented-generation-30e875d63a35


Motivation: Available solutions

• Knowledge cutoff, Hallucination -> Supervised 
Finetuning: 

• Time consuming

• Data generation (prompt-completion pairs) is time 
consuming and expensive

• Dynamic data sources (i.e., changes quickly) 

• Hallucination -> RLHF
• Resource intensive 

• Human and manual input and supervision

• Works only during training and not inference 

Supervised finetune 
(from Understanding Parameter-Efficient Finetuning of Large 
Language Models: From Prefix Tuning to LLaMA-Adapters)

https://lightning.ai/pages/community/article/understanding-llama-adapters/
https://lightning.ai/pages/community/article/understanding-llama-adapters/


Context window

• Incorporate knowledge into LLMs using 
context window:

(+) No need to finetune
(-) the context window is limited
(-) cost increases as the size of the context 
increases

-> How to make the most of the limited 
context window

Feeding up-to-date information to the LLM
source: The full stack LLM bootcamp

https://fullstackdeeplearning.com/llm-bootcamp/spring-2023/augmented-language-models/


Augmented LLMs

source: The full stack LLM bootcamp 

https://fullstackdeeplearning.com/llm-bootcamp/spring-2023/augmented-language-models/


Retrieval augmentation

• Why? 
• The process of building the context for LLMs == Information retrieval
• Search for right data to put in the context window

• Retrieval Pipeline: Given a user query, search for all the relevent 
objects (e.g., documents) and rank them 

User Query Retrieve relevant 
documents

Append to the LLMs 
context

Knowledge 
base

Ranking
TOP K

Answer



Retrievers

• Sparse : sparse bag-of-words 
representations of the documents and 
the queries

-> checking for precise term syntax overlap 

-> Doesn’t capture semantic information, 
correlation information

• Dense: dense query and document 
vectors obtained from neural networks 
(a.k.a embeddings)

-> computing the semantic similarity of 
related topics

source: Pinecone-dense-vectors

source: on word embeddings

https://www.pinecone.io/learn/dense-vector-embeddings-nlp/
https://www.ruder.io/word-embeddings-1/


Which embedding model?

• Popular but not free: 

OpenAI text-embedding-ada-002

• Open source: see MTEB 
leaderboard on HF

• For better retrieval quality, 
training your own embedding 
model is necessary

Massive Text Embedding Benchmark (MTEB) Leaderboard.

https://huggingface.co/spaces/mteb/leaderboard


How to chunk data?

• Like LLMs, embedding models have limited context

->  Split the documents to multiple chunks

• Things to consider:
• Natural structure, semantic content

• Tools: Langchain, NLTK, LLamaIndex

• Ideas:
• Perplexity decreases at a semantic boundary 
• Use distance between embedding (higher -> chunk)
• Summarize -> embed

Pinecone-chuncking strategy

https://www.pinecone.io/learn/chunking-strategies/?utm_content=244745025&utm_medium=social&utm_source=twitter&hss_channel=tw-1287624141001109504%E2%80%8B


Embedding Retrieval: KNN & Flat index

Query Embedding store

- Works for < 100K vectors (difference in speed not 
noticeable)

- Not scalable (of course)

source: Do you actually need a vector 
database?

https://www.ethanrosenthal.com/2023/04/10/nn-vs-ann/%E2%80%8B
https://www.ethanrosenthal.com/2023/04/10/nn-vs-ann/%E2%80%8B


Approximate nearest neighbor (ANN) index 

•Embedding Indexes : data structure enabling 
efficient and fast retrieval

•Approximate nearest neighbor (ANN) index 

• The indexing process :

• partitioning the vector space

• creating data structures to enable efficient traversal 
and search operations

• storing the necessary metadata for each indexed 
vector.





Vector databases

• ANN indexes are just data structure, they do not offer:
• Hosting
• Storing data/metadata alonside vectors
• Combining sparse + dense retrieval
• Managing embedding functions themselves
• Scale 
• …...



Vector database

source: The full stack LLM bootcamp 

https://fullstackdeeplearning.com/llm-bootcamp/spring-2023/augmented-language-models/


Retrieval Augmented LLMs- Full pipeline



Retrieval Relevance : NN way

- Re-ranking: further re-fined the retrieved documents 
- Cross-encoder: takes a query and a document vector as the input and calculates the relevance scores as the 

maximum inner product over it. 
- Bi-encoder: takes a query and a document vector as the input and calculates the relevance scores as the 

maximum inner product over it. 
- Cascaded pipeline: cheap algorithm for retrieval (e.g, ElasticSearch, BM25, bi-encoder), more complex model 

for re-ranking (cross-encoder)
- Using LLMs : to generate synthetic data in few-shot manner and then finetune a re-ranker model
- Read more here

 Figure adapted from ColBERT paper
InPars Method

https://blog.reachsumit.com/posts/2023/03/llm-for-text-ranking/#syntactic-vs-semantic-approaches


Retrieval Relevance : Non-NN ways

- Maximal marginal relevance (MMR): selects diverse and representative documents from a larger set of search 
results. 

- FIltering: based on metadata or keywords

https://www.cs.cmu.edu/~jgc/publication/The_Use_MMR_Diversity_Based_LTMIR_1998.pdf


Thank you


